首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7452篇
  免费   1029篇
  国内免费   758篇
化学   2477篇
晶体学   111篇
力学   1039篇
综合类   191篇
数学   2541篇
物理学   2880篇
  2024年   6篇
  2023年   69篇
  2022年   147篇
  2021年   231篇
  2020年   252篇
  2019年   184篇
  2018年   195篇
  2017年   303篇
  2016年   316篇
  2015年   249篇
  2014年   419篇
  2013年   638篇
  2012年   411篇
  2011年   471篇
  2010年   386篇
  2009年   498篇
  2008年   519篇
  2007年   474篇
  2006年   450篇
  2005年   393篇
  2004年   308篇
  2003年   307篇
  2002年   251篇
  2001年   241篇
  2000年   212篇
  1999年   179篇
  1998年   152篇
  1997年   148篇
  1996年   129篇
  1995年   142篇
  1994年   78篇
  1993年   73篇
  1992年   60篇
  1991年   43篇
  1990年   54篇
  1989年   42篇
  1988年   39篇
  1987年   22篇
  1986年   21篇
  1985年   29篇
  1984年   28篇
  1983年   5篇
  1982年   22篇
  1981年   16篇
  1979年   10篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1957年   2篇
排序方式: 共有9239条查询结果,搜索用时 15 毫秒
991.
To improve oil recovery (IOR) performance of polyacrylamide polymer media, the paper presented the nanocomposites (PA-B-S) of acrylamide-styrene-AMPS copolymers (PA-S) with monodisperse SiO2 particles. The monodisperse particles from 17 to 100 nm with low size deviation were adopted as an inorganic phase, and their nanocomposite properties and morphology were investigated with viscosity measurements, thermal degradation (TGA), flooding test and transmission electron microscopy (TEM) techniques. For 66.7 nm SiO2 particles at 0.5 wt% load, the nanocomposites produced viscosity enhancement at critical concentration, high salt-tolerance behavior, and the high degradation temperature at 411 °C, which were obviously higher than those of pure PA-S copolymers. These inorganic-organic synergistic or nano size effects were shown in a series of prepared nanocomposite samples. TEM morphology proved that PA-B-S solution at LCST formed uniform dispersion of the SiO2 particles encapsulated with this associating copolymer and formed stable drop-like emulsion patterns.In flooding experiments, the PA-B-S solutions at critical viscosity gave the resistance factor of 9.38 and residual resistance factor of 3.39, compared with those of 5.20, 1.51 for pure PA-S, respectively. Such improved properties of PA-B-S were suitable for producing high shearing behavior and sweep volume in IOR or EOR. As the controllable characters of monodisperse SiO2 particles, the results from their nanocomposites were the good references to the multi-disperse particles acted as IOR media.  相似文献   
992.
A kinetic spectrophotometric procedure was developed for determination of submicromolar orthophosphate based on the reaction in which orthophosphate serves as a catalyst in the reduction of molybdenum, and the initial rate of molybdenum-blue formation (λmax = 780 nm) is proportional to the concentration of orthophosphate in the samples. The detection limit (3 × standard deviation of blank, n = 8) was 6 nM and the linear calibration ranged from 10 to 100 nM (r2 = 0.997). The precisions of this method were 3.3% at 10 nM and 5.4% at 50 nM (n = 8), respectively. Similar to other molybdate based methods, silica and arsenate in the samples can interfere with phosphate determination. The responses of silicate and arsenate were about 25% and 7% of that of orthophosphate, respectively, and their interferences were enhanced in the presence of phosphate in the samples due to the synergistic effect of phosphate with arsenate or silicate on the molybdate reagent.  相似文献   
993.
In this work, the removal of Cu2+ from a synthetic effluent has been tested by means of polymer enhanced ultrafiltration (PEUF), using partially ethoxylated polyethylenimine (PEPEI) as water-soluble polymer. Overall, the two necessary steps of a hypothetical continuous process, metal retention (in total recirculation and discontinuous mode) and polymer regeneration (in discontinuous mode), have been confronted individually. On the one hand, the values of temperature (T), transmembrane pressure (ΔP), metal–polymer ratio and pH that maximize both, permeate fluxes and rejection coefficients, have been obtained by ultrafiltration tests, reaching Cu2+ retention coefficients higher than 97%. On the other hand, the polymer regeneration step has been carried out by the electrochemical technique, which consists in the metal electrodeposition on the cathode of an electrochemical cell. In a first step, cyclic voltammetries have been carried out to assure the polymer does not suffer any oxidation or reduction process. From these tests, a cathodic working potential has been selected to minimize hydrogen evolution reaction (−0.7 V vs. Ag/AgCl). Working at this voltage in deposition tests, a pH of 3.3 has been selected from experiments at different pH values. This pH is less extreme than the pH necessary if this step was carried out chemically (pH 2).  相似文献   
994.
A vacuum membrane distillation (VMD) model has been developed and validated with experimental data. The model consists of an extended transport model for the VMD process and is able to predict the effects of concentration and temperature polarization on the overall process performance. To validate the model, first it was tested with few experimental case studies from literature [S. Bandini, G.G. Sarti, Heat and mass transport resistances in vacuum membrane distillation per drop, AIChE J. 45 (7) (1999) 1422–1433; K.W. Lawson, D.R. Lloyd, Membrane distillation. I. Module design and performance evaluation using vacuum membrane distillation, J. Membr. Sci. 120 (1996) 111–121; A.M. Urtiaga, G. Ruiz, I. Ortiz, Kinetic analysis of the vacuum membrane distillation of chloroform from aqueous solutions, J. Membr. Sci. 165 (2000) 99–110]. Then the VMD model has been validated with experimental data collected from the recovery of aroma compounds from black currant [R.B. Jørgensen, A.S. Meyer, C. Varming, G. Jonsson, Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation, J. Food Eng. 64 (2004) 23–31]. In this work, recovery of 12 characteristic volatile aroma compounds from black currant juice has been studied. The simulated results from the VMD model, in terms of aroma concentration in the permeate have been compared with those obtained from laboratory experiments. The validated model has been used to study the effects of various process and membrane parameters on the concentration factor. The physical properties of various aroma compounds have been predicted using group contribution method as a function of temperature.  相似文献   
995.
In this study, the electrical properties of the new polyamide–urea (ICIC–MPD) reverse osmosis composite membrane were analyzed via two self-made test cells. The electrical potential difference across membrane was measured via a perpendicular flow through mode potential difference measurement cell, and the electrical conductivity of membrane was tested by a tangential flow across mode conductivity measurement cell. Both streaming potential coefficient and gap between the upward and downward curves were determined by the plot of electrical potential difference versus up-loading and down-loading external pressure difference at both sides of membrane. It was found that pH of electrolyte solution has strong impact on streaming potential coefficient and electrical conductivity due to the dissociation of COOH group and protonation of NH2 group of the active layer of ICIC–MPD membrane. It was also observed that both concentration of monomer 5-isocyanato-isophthaloyl chloride (ICIC) in the organic phase and contact time of organic phase with aqueous phase play an important role in salt rejection rate, gap between curves and electrical conductivity of the prepared ICIC–MPD membrane, and experimental results indicate that salt rejection rate of ICIC–MPD membrane is closely correlated to gap between curves at either polymerization condition. In addition, the effects of fouling behaviors on electrical potential difference and electrical conductivity of membrane were also discussed.  相似文献   
996.
Parallel-plates enthalpy exchangers are one of the most commonly encountered energy recovery devices that are used to simultaneously transfer both sensible heat and moisture between fresh air and exhaust ventilation air. For such equipments, the water vapor sorption properties of the plate materials have tremendous impacts on system performance. In this investigation, three different materials, namely, common paper, CA (cellulose acetate) membrane and a modified CA membrane) are selected as the plate materials for three enthalpy exchangers. Sorption curves and contact angles of these three materials are measured to reflect their hydrophilicity. The steady-state sensible and latent effectiveness of the three exchangers are tested in a special test rig, and the test results are compared with the model predictions. A heat and moisture transfer model for the enthalpy exchangers is proposed. The effects of the varying operating conditions like air flow rates, temperature, and humidity on the sensible and latent effectiveness are evaluated. Both the numerical and experimental results indicate that the moisture resistance through plates is co-determined by thickness, sorption slope, and sorption potential. Moisture diffusivity in various materials is in the same order. So when the plate thickness is fixed, the higher the sorption slopes are, the higher the latent performance is. Of the three exchangers, the exchanger with the modified CA membrane material has the highest performance due to small thickness, steep sorption slope, and large sorption potentials. The paper exchanger has a latent effectiveness of 0.4, while the membranes have latent effectiveness of greater than 0.7.  相似文献   
997.
A concept demonstration has been made to simultaneously enhance both O2 and CO2 gas permeance and O2/N2 and CO2/CH4 selectivity via intelligently decoupling the effects of elongational and shear rates on dense-selective layer and optimizing spinning conditions in dual-layer hollow fiber fabrication. The dual-layer polyethersulfone hollow fiber membranes developed in this work exhibit an O2/N2 selectivity of 6.96 and an O2 permeance of 4.79 GPU which corresponds to an ultrathin dense-selective layer of 918 Å at room temperature. These hollow fibers also show an impressive CO2/CH4 selectivity of 49.8 in the mixed gas system considering the intrinsic value of only 32 for polyethersulfone dense films. To our best knowledge, this is the first time to achieve such a high CO2/CH4 selectivity without incorporating any material modification. The above gas separation performance demonstrates that the optimization of dual-layer spinning conditions with balanced elongational and shear rates is an effective approach to produce superior hollow fiber membranes for oxygen enrichment and natural gas separation.  相似文献   
998.
There is a growing interest in using large pore size probes for microdialysis of macromolecular markers to monitor cell and tissue functions. Fluid balance could be an important issue when using large pore size microdialysis probes, which are affected by the mode of operation. In this study, the effect of pumping systems, push, pull, push-and-pull, and the resulting transmembrane pressure on the fluid balance, as well as, the relative recovery of small molecular nutrients and metabolites and macromolecules (proteins) were examined. The validity of the internal reference in situ calibration was examined in detail. It is concluded that a push-and-pull system is the only effective method of eliminating fluid loss or gain. The relative recovery of small solutes is not affected much by the applied pumping methods; however, the relative recovery of macromolecules is significantly influenced by them. The in situ calibration technique using Phenol Red can provide reliable results for small molecules including glucose and lactic acid. Using 10 and 70-kDa fluorescent dextrans as the internal standard for large molecules in situ calibration of similar size does not work for the pull pump system, but does work well when using a push-and-pull pumping method.  相似文献   
999.
The traditional analysis of the fluorescence recovery kinetics after spot bleaching yields expressions for the diffusion coefficient of the probe that are not suitable for linear fittings. In a previous work we developed an improved recovery function that is a better alternative for data analysis. To illustrate its application to real cases and compare it with the previous data treatment, we measured the time response of fluorescein in aqueous sucrose solutions, covering the unsaturated and the supercooled region, where decoupling between diffusion and viscosity is observed. The results are compared with the mobility of different types of solutes in aqueous sucrose solutions and are discussed in terms of the classical hydrodynamic model.  相似文献   
1000.
V2O5/AC具有很好的烟气同时脱硫脱硝能力,脱硫过程包括其对烟气中SO2的吸附、吸附饱和后SO2从其上的脱附(再生)及脱附出SO2的资源化。考察了同时脱硫脱硝后的V2O5/AC在含NH3气氛中的再生和硫资源化的耦合过程。研究了NH3注入量、再生温度、再生时间和尾气循环流量对再生效率、硫回收率及二次脱硫脱硝活性的影响。结果表明,再生温度和再生时间主要影响SO2的脱附,因而影响再生效率和二次脱硫脱硝活性;NH3注入量不影响SO2的脱附,但明显影响硫回收率和二次脱硫脱硝活性;尾气循环模式是提高硫回收率的重要方法,但在研究的条件下循环流量对再生效率、硫回收率和二次脱硫脱硝活性的影响不大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号